Enigme de Trolls pour des Trolls...

:arrow: 100 :!:

:arrow: beaucoup, car c’est un troll…et que ne peux pas répondre plus présisément…

j’en propose 2 en attendant la réponse à celle là :

1- un troll part d’une ville A en direction d’une ville B, ce qui lui fait une distance de 652 lieux à parcourir pour arriver à destination… c’est un vieux troll qui ne coure qu’à une vitesse de 17 lieux par heure. 1 demi heure plus tard, un autre troll part de la ville B en direction de la ville A, sur la meme route. il est plus jeune et court à une vitesse de 23 lieux par heure. Quand ils se croiseront, lequel des deux trolls sera le plus loin de la ville B ?


2- Limp offre 23 gazelles à un copain troll qu’avait la dalle… son copain les mange toutes sauf 11… combien en reste-t-il à limp qui commence également à etre affamé?

limp dit:
Un Troll pèse 50kg plus la moitié de son poids. Combien pèse t'il ?

:arrow: 100KG ? (j'ai lu les 4 premières pages... sans doute qu'on a déjà répondu à celle-ci... mais je participe !)
Silfar dit:
1- un troll part d'une ville A en direction d'une ville B, ce qui lui fait une distance de 652 lieux à parcourir pour arriver à destination... c'est un vieux troll qui ne coure qu'à une vitesse de 17 lieux par heure. 1 demi heure plus tard, un autre troll part de la ville B en direction de la ville A, sur la meme route. il est plus jeune et court à une vitesse de 23 lieux par heure. Quand ils se croiseront, lequel des deux trolls sera le plus loin de la ville B ?

:arrow: Ils peuvent se croisé n'importe où, il seront donc au même endroit, et donc à la même distance de la ville B... mais si on considère l'épais cuir du Troll et qu'il se croise "nez-à-nez" le dos du jeune troll (en partance de la ville B) est donc plus proche, finalement si le vieux troll ne bande pas il devrait se trouvé légérement plus loin de la ville B !!!
Silfar dit:
2- Limp offre 23 gazelles à un copain troll qu'avait la dalle... son copain les mange toutes sauf 11... combien en reste-t-il à limp qui commence également à etre affamé?


:arrow: A priori 11... c'est écrit dans l'énoncé !!!

Bon, elles sont toutes trouvées alors passons aux choses sérieuses:
Un Troll décide de faire un sondage, à savoir “Si on ne devait garder que cinq pouickies, lesquels choisiriez vous ?”
Mais sachant que d’autres Trolls raleraient ne voyant pas apparaitre leur combinaison favorite vu le nombre de possibilités, il s’abstient.
Serez vous retrouver le joli chiffre qui a fait tellement peur à notre gentil Troll ?

limp dit:Bon, elles sont toutes trouvées alors passons aux choses sérieuses:
Un Troll décide de faire un sondage, à savoir "Si on ne devait garder que cinq pouickies, lesquels choisiriez vous ?"
Mais sachant que d'autres Trolls raleraient ne voyant pas apparaitre leur combinaison favorite vu le nombre de possibilités, il s'abstient.
Serez vous retrouver le joli chiffre qui a fait tellement peur à notre gentil Troll ?


:arrow: 4 ?????????????????????????????????????? J'en sais rien, j'ai même pas compris l'énoncé !

édit:
:arrow: 2 118 760 (en copitant la réponse de Brunbrun)
:arrow: Ma vrai réponse : 2(1035)+46 = 2116
limp dit:Bon, elles sont toutes trouvées alors passons aux choses sérieuses:
Un Troll décide de faire un sondage, à savoir "Si on ne devait garder que cinq pouickies, lesquels choisiriez vous ?"
Mais sachant que d'autres Trolls raleraient ne voyant pas apparaitre leur combinaison favorite vu le nombre de possibilités, il s'abstient.
Serez vous retrouver le joli chiffre qui a fait tellement peur à notre gentil Troll ?

50!/(45!5!)
mais si c'est ça la réponse, je vois pas ou est la difficulté

Non non, reformulé, ça donne “combien de combinaisons différentes de cinq pouickies peut on faire ?”
… sachant que ne sont pris en compte que les 50 pouickies présents à gauche des messages que vous rédigez…

Ben alors brunbrun a bon. C’est pas une enigme, c’est un exo de combinatoire, ton truc !

:arrow: son pagne ?

Bon, nouvelle énigme:

Un Troll idiot a oublié sa pierre-oreillet en haut d’une montagne qu’il doit gravir.
Il part à 9h du matin et arrive au sommet à midi.
Il s’y repose jusqu’au lendemain matin et en repart à 9h pour arriver en bas avec sa pierre à 11h.
Existe t’il un endroit sur le chemin où il est passé à la même heure les deux jours ?
Comment prouver l’existence ou l’inexistence d’un tel endroit ?

C’est déjà passé dans cette section sous le nom de “mine d’or”.

Et je laisse cogiter ceux qui ne savent pas…

limp dit:Existe t'il un endroit sur le chemin où il est passé à la même heure les deux jours ?


Réponse : s'il est monté d'un côté et redescendu de l'autre, la réponse est non. Y'a du relâchement dans les énéoncés.

C'est beau le théorème des valeurs intermédiaires.
Réomir dit:C'est déjà passé dans cette section sous le nom de "mine d'or".


Arrgh...
Bon, en même temps je peux pas toutes les lire...
En fait je viens de m'offrir un bouquin où figurent les grands classiques (j'en connaissais pas mal)
J'essaies d'en profiter pour vous les proposer sous une forme un peu plus Trolle...

Effectivement, l’énigme a déjà été posée ICI

Je vous en repropose une dans le quart d’heure qui arrive…